
Resonance tunnelling and breakdown of the quantum Hall effect in strong electric fields

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys.: Condens. Matter 2 1583

(http://iopscience.iop.org/0953-8984/2/6/017)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 10/05/2010 at 21:44

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/2/6
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys.: Condens. Matter 2 (1990) 1583-1592. Printed in the UK 
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Abstract. Resonance scattering of electrons on impurities is shown to play a crucial role in 
non-linear conductivity under quantum Hall effect conditions at zero temperature. The 
dissipative current as a function of electric field and Landau level filling factor is calculated. 

1. Introduction 

It is well known that the longitudinal conductivity turns to zero in the quantum Hall 
effect (QHE) conditions at zero temperature. Nevertheless there exists a longitudinal 
current depending non-linearity on the electric field E .  This current is caused by the 
interaction of electrons with impurities and phonons. The experiments (Cage et a1 1983, 
Ebert eta1 1983) have shown the longitudinal current to be sharply rising when E exceeds 
some critical value E,. Electric field is related to the drift velocity of electrons by Vd = 
cE/H.  Cage et a1 (1983) and Ebert et a1 (1983) found that u d  corresponding to E, is close 
to the sound velocity s. As a consequence theories (Heinonen et a1 1984, Streda and von 
Klitzing 1984, Smrcka 1985) appeared which treated the dissipation as originated by 
Cherenkov radiation of phonons. The comparison of theoretical results (Heinonen et a1 
1984, Streda and von Klitzing 1984) with the experiment can hardly be done because of 
the strong inhomogeneity of the current-distribution in the samples (Simon et a1 1986). 
Moreover, for small samples (Bliek et a1 1986a, b, d’Iorio et a1 1987) u d  corresponding 
to E, exceeds the velocity of sound by at least an order of magnitude. So, Cherenkov 
radiation by itself cannot explain the fast increase of dissipative current. 

We consider the resonance tunnelling of electrons between Landau levels and show 
that under certain conditions it plays the leading role in the formation of the non-linear 
dissipative current. Energy is conserved in tunnelling processes, so the dissipation can 
be attributed to the electron-phonon interaction. Temperature is supposed to be zero. 
It means that only emission of phonons by electrons should be taken into account. The 
thermal conductivity is assumed to be sufficiently large, permitting phonons to go out 
of the system freely. 

This paper is organised in the following way. In § 2 we consider an elementary process 
of resonance tunnelling through an impurity, and find the conditions that are necessary 
to neglect the tunnelling through a chain of impurities compared with tunnelling through 
a single impurity. In § 3 the kinetics of the electron-phonon system is considered. The 
following processes are included: tunnelling between Landau levels and impurities, 
jumps of electrons with emission of phonons along one Landau level as well as jumps to 
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another Landau level or an impurity. We find the dissipative current as a function of the 
filling factor and electric field. Section 4 is devoted to fluctuations of the current. 

2. Impurity-mediated resonance tunnelling between Landau levels 

We consider first an electron moving in the plane (x, y ) .  The magnetic field His  supposed 
to be perpendicular to this plane. The electric field E is directed along the x axis. In the 
Landau gauge the vector potential has only one component A,(x) = Hx.  So, the y 
component of the momentum (denoted p )  is conserved. In the presence of an electric 
field the electron wavefunction qflp(r) does not change; however, the energy of the 
electron state depends on p linearly: 

where E = eH/mc is the cyclotron frequency. We would like to remind readers that x = 
cp/eH is the mean coordinate of the electron. 

Direct transitions of electrons between Landau levels are permitted by the energy 
conservation law but they are forbidden by the momentum conservation law. Hence 
electron scattering by impurities or phonons is necessary to permit transitions between 
Landau levels. 

Let us consider tunnelling between Landau levels mediated by impurities. Any 
impurity has at least one bound state between any Landau levels. A resonance with a 
bound-state level strongly enhances the tunnelling probability. For a proper description 
of the resonance tunnelling the exact electron wavefunction in a potential created by the 
impurity has to be found. We accept the simplest model form of this potential: 

E , ~  = ho,(n + 9)  - eE cp/eH (1) 

V(r)  = Ad(r). (2) 
The electron energy spectrum for such an impurity has been calculated by Prange 

(1981). Here we find exact wavefunctions for the same problem. More generally, we 
consider the Hamiltonian H = H o  + V(r)  where V(r)  is defined by equation (2). The 
Green function for the Hamiltonion H has a form 

G!(r,  O)AG!(O, r' )  
1 - AG!(O, 0) 

G E ( r ,  r')  = G!(r,  r')  + 
where 

(3) 

is the Green function for the Hamiltonian and (Y labels eigenstates with energy E,. By 
the standard procedure we get the eigenfunctions of the Hamiltonian 

q f f ( r ,  t )  = lim G E ( r ,  r ' ,  t - t ' )q; (r ' ,  t )  dr '  
t'+ --m I 

The scattering amplitude is equal to the projection of W, onto the unperturbed state 

Using equation ( 6 )  one finds the transition probability 

where q f f  = v:(O) and K ( E )  = G;,(O, 0). 
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Equation (7) has the typical form of a Breit-Wigner probability for a resonance 
scattering through a bound state. The energy of the bound state is defined by 

l / A  - Re K ( E ~ )  = 0. 

The values lq,12 and 1q,{l2 are proportional to probabilities to go into and go out of the 
bound state. The imaginary part of K ( E )  is proportional to the total probability of decay 
through all possible channels: 

Im K ( E )  = rc - ~ , ) 1 q , 1 2 .  (8) 
For our particular problem we should replace a by two parameters: an integer n,  

which is the number of the Landau levels, and they component ofp. Further we assume 
n = 0 in the initial state and n = 1 in the final state. So, the role of a and a' is played byp 
andp' or corresponding coordinatesx and x' . Energy conservation implies the following 
relationship between x - x' and the electric field E :  

x' - x ~ A = f i  w,/eE. (9) 
For small electric fields the value of A exceeds the magnetic length lH. Therefore 
electrons involved in the tunnelling can be considered quasi-classically . This means that 
a single impurity creates electric current 

Here we supposed that the first Landau level is filled almost completely while the second 
Landau level is almost empty. This is true in small electric fields since the tunnelling 
current is exponentially small. 

Hence asymptotically at 
E-  0 we have 

The transition probability has a sharp maximum at E ,  = 

where dimensionless parameter l j  = ( E ~  - ho,)/hoc describes a deviation of the bound- 
state energy from the middle of the gap between Landau levels. Equation (11) can be 
rewritten as 

where 

is the probability of transition for an electron from an impurity to the nth Landau level. 
The current (12) takes its maximum when the bound-state energy at zero magnetic 

field lies just in the middle of the gap between Landau levels. In the vicinity of the 
maximum it can be rewritten as 

I=  
exp( - A /41&) 

(14) 
vrc A 3  

4(1 + n2/8) (G) exp(ljA2/&) + (A2/2&) exp(-gA2/Z&)' 

In small samples, electrons and holes created by tunnelling processes presumably go 
out of the system without recombination. Hence, the total current can be presented as 
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a sum of currents (14) generated by single impurities (Pokrovsky et a1 1988). In large 
samples, where recombination takes place (see 5 3), the dissipative current decreases 
and equation (14) defines the upper limit of the single impurity contribution to the total 
dissipative current. 

In practice, current is available for a measurement if the ratio AllH is not too large. 
For Allh 1 the current Iequals e a c  within an order of magnitude, i.e. I - 1 pA for H = 
10 T. 

The current (14) decays exponentially with increasing lgl, Assuming the density of 
states p(g + 4) to be slowly varying with 5 near the centre of the gap between Landau 
levels, the mean value of the current produced by one impurity is 

Tavger and Erukhimov (1966) were the first to consider the problem of tunnelling 
between Landau levels. They studied non-resonance tunnelling and got much smaller 
probability proportional to exp(-2A2/1$). Chaplik and Entin (1974) and Lifshiz and 
Kirpichenkov (1979) considered resonance tunnelling in the absence of a magnetic field. 

To get (15) we assumed that the tunnelling through a fixed impurity is not influenced 
by other impurities. That will be the case for small enough concentration of impurities. 
To estimate a proper range of concentrations we calculate the probability of tunnelling 
mediated by a pair of impurities having strengths A l  and A, and placed at points rl and 
r,. The Green function of an electron in the field created by these impurities is 

G E ( r ,  r ’ )  = G:(r, r ’ )  + 2 G:(r, rl)Mi1G:(r,t, r’)  (16) 
1>1 

where 

The probability for an electron with initial momentump to get from the first Landau 
level to the second one acquiring the final momentump’ is 

The probability (18) reaches its maximum for pairs of impurities having close values 
of y coordinates. The bound-state energies associated with such pairs placed in a given 
electric field should also be close to each other. The tunnelling current created by such 
a pair of impurities is given by a sum of Wpp8 over all the initial and final states: 

The denominator on the RHS of equation (19) becomes very small at the energy close to 
bound-state energy 

The Green function G:p (rr) depends on r since a system is influenced by electric field. 
The current (19) averaged over the bound-state energies takes the form: 

l / A l  = Re G2p(r1r1) l / A ,  = Re G:P (r2r2). (20) 
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where pi(&) = p ( ~  + xi/A - i). The expression (21) has a maximum when the distance 
between impurities is equal to A/2. Averaging over the positions of impurities we get 

cp(t)p( i )  exP[-WlH>’l  (22) 
where c is the concentration of impurities. Comparing this result with the current (15) 
associated with single impurities one finds that the latter prevails provided the following 
inequality is satisfied: 

p(t>p($)cl% Q p ( i )  exp[ -Q(A/~H)*]. (23) 
For a fixed concentration of impurities the condition (23) can be broken when decreasing 
the electric field. Then the tunnelling will proceed through chains of impurities. A similar 
situation has been considered by Shklovskii (1982). 

3. Dissipative current as a function of Landau level filling 

The interaction of an electron with impurities cannot change its energy. To get the 
dissipative current the electron-phonon processes should be included. As before we 
consider the case of zero temperature with no living phonons. Hence, scattering and 
absorption of phonons by electrons does not take place, only the emission of phonons 
is possible., 

For u d  > s the conservation laws permit electrons to emit phonons and to move along 
Landau levels. On the other hand, if u d  < s in a pure system it is impossible. However, 
in the presence of impurities breaking the momentum conservation, electrons can transit 
between different states of the same Landau level even for u d  < s.  

Owing to the tunnelling electrons appear at the second Landau level and holes appear 
at the first. They can recombine with the emission of phonons. Recombination is 
probable for an electron and a hole having the same coordinates with uncertainty 1” 
and the corresponding probability does not contain an exponentially small factor. 
Recombination opens an additional channel of the decay of a bound state on an impurity. 
The width of the resonance level increases, in turn decreasing the resonance tunnelling 
probability. This is still correct even when the number of electrons on the second Landau 
level and holes on the first one is exponentially small. 

Assuming the electron-phonon interaction to be weak we neglect processes with 
more than one phonon emitted and phonon-assisted tunnelling. We also neglect tran- 
sitions of electrons from one localised state to another. As has been explained above, it 
holds if the impurity concentration is small enough, and/or the electric field is sufficiently 
high. Under these assumptions the following system of kinetic equations for the electron 
density N,(r) and the hole density &(r) can be written: 
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Here Pe(rr’) is the probability of electron scattering on the second Landau level. The 
function We(i, r )  is the probability of tunnelling from ith impurity to the second Landau 
level. Q,(i, r )  is the probability for an electron to fall from the second Landau level to 
ith impurity, emitting a phonon. Analogous values with index h are relevant to holes 
on the first Landau level. The value Q(rr’) is the probability of direct electron-hole 
recombination. The variable ni is the electron occupation number for ith impurity. It is 
governed by the following kinetic equation: 

d n i / a t =  - ai 2 we(i, r) f (1 - ni) wh(i, r )  
r r 

- ni C Nh(r)Qh(i, r) + (1 - n i )  C Ne(r)Qe(i, r ) .  (26) 
r r 

We assume impurities to be distributed homogeneously on average. Then in a large 
sample stationary densities of electrons and holes do not depend on coordinates. Let 
n ( ~ )  be the electron occupation number in a bound state with energy E .  For a stationary 
homogeneous state the kinetic equations (24)-(26) can be simplified to 

C l  n(E)P(E)We(E) dE-cNe [1-n(E)lP(E)Qe(E) dE-NeNhQ = 0 (27) 

and 

where the tunnelling probabilities We(&) and Wh(&) are defined by equation (13) with 
n = 1 and 0 respectively. The value Qe(&) is the total probability of the electron transition 
from the second Landau level to a bound state on an impurity accompanied by the 
emission of a phonon. Qh is the analogous probability for a hole. For given transition 
probabilities the calculation of the dissipative current is straightforward: 

(30) 

where 

q,, = ’- E xP,(r, 0) and qh,= - ‘ x x p h ( o , r )  
r r 

Only two of the three equations (27)-(29) are independent. So, we need additional 
information to solve this system. In the experiment the filling factor v or in the other 
words the total electron density N is usually fixed: 

Equations (28), (29) and (31) define the parametric dependence of the dissipative current 
on the total electron density N ,  the values Ne and Nh serving as parameters. 
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The breakdown of the QHE has been considered previously by Pokrovsky et a1 (1988). 
The distributions N,(x)  and Nh(x) found in Pokrovsky et a1 (1988) depend on x explicitly. 
It is true in sufficiently small samples with size L, along the x axis much less than the 
electric charge screening length. 

Let the number of electrons N be less than the number of bound states on impurities. 
One should expect that in small electric fields the function n ( ~ )  is almost the same as for 
E = 0, i.e. the bound states with E < E ~ ( N )  are filled. If E is not very close to one of the 
Landau levels then Ne and Nh are exponentially small. This agrees with equations (27)- 
(29). According to equation (29) the position of the step in the distribution n ( ~ )  is 
smeared out over the interval &/A2 near .so. 

An explicit solution of the system (28), (29) and (31) can be found for two limiting 
cases: when the system is near the centre and near the edge of the Hall plateau. 

The centre of the Hall plateau corresponds to = i. In equations (27)-(29) only the 
tunnelling probabilities change rapidly with energy E .  Near E = 4 they can be written in 
the form 

W e  = y(A2/21&)exp[(-A2/41$)(1 - 4E)] 
Wh = y(A2/21&)exp[(-A2/41&)(1 + 4E)] 

(32) 
(33) 

where E = 4 + E as before. The constant y can be found from equation (13). We replace 
slowly varying functions p(&), Qe(&) and Qh(&) by their values at E = 1. 

We are interested in a regime when extra electrons, added to the system by change 
of N ,  stick presumably to impurity levels. It is correct if the impurity concentration 
satisfies the inequality 

Introducing the parameters a and p instead of Ne and Nh by equations 
N e e , ( $ )  = a y ( A / f i  lH)exp(-A2/41&) 

and 

the system of equations (27)-(29) can be reduced to one equation: 

exp(-A2/41H) =e cl& e exp(-A2/21$). (34) 

NhQh(i) = py(A/VT lH)exp(-A2/41&) (35) 

= ap dY 
dl - fom y2 + y ( a  + p) + 1 

where 

We suppose that g S- 1. Then near the centre of the plateau it follows from (36) that 
a/3 = 1. In this case equation (31) can be reduced to 

N = c P ( E )  d E + cp(h)(1&/A2) ln(V'&l,/A). (38) 

The first term on the RHS of (38) corresponds to the value of N in the centre of the Hall 
plateau at zero E .  The dissipative current in the same approximation is 

The dissipative current as a function of the filling factor takes its minimum 

at the value of N which depends on electric field 
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Consider now the filling of impurity levels near the edge of the Hall plateau. Provided 
the condition 

cl& 9 exp(-A2/41$) (42) 

n ( ~ )  = N e Q e ( E ) / [ W e ( & )  + N e Q e ( ~ 1 1 .  

is satisfied, the number of holes can be neglected, i.e. Nh and wh can be put equal to 
zero in equation (29). Then the mean numbers of electrons on impurity levels are 

The tunnelling probability We(&)  cc exp[-A2(1 - ~ ) ~ / 1 ; ]  depends exponentially on E .  

For We(&) < N e e e ( & )  the impurity levels are practically completely filled while for 
We > N e e e ( & )  they are empty. Define the energy eo by 

The width of an interval in which n ( ~ )  drops from one to zero is of the order of 

The total electron density is 

(43) 

W e ( E 0 )  = N e Q e ( E 0 ) .  (44) 

1&/[A2(1 - E o ) ] .  (45) 

(46) N = c IoEo P ( E )  de.  

Here we have neglected the filling of the second Landau level. As follows from (44) this 
can be done if 

p ( ~ ~ ) c l &  9 exp[-A2(1 - ~ ~ ) ~ / 1 & ] .  (47) 
Near the plateau edge only the transitions of electrons between Landau level and 
impurity levels have been taken into account. We neglected the transitions from one 
impurity to another or multiple scattering by impurities. This requires the concentration 
of impurities to be sufficiently small, i.e. 

The constraints (47) and (48) can be satisfied for larger P ( E ~ )  than (34). The reason is 
that near the plateau edge the tunnelling distance is much less than near the centre. 

The dissipative current is defined by the first term of equation (30). It is equal to 

Energy E increases with Naccording to (46) until inequality (47) is true. When increasing 
Nfurther, delocalised states at the upper Landau level will be occupied, will remain 
constant. This means that the dissipative current rises sharply after filling of impurity 
levels with E = 

p ( ~ ~ ) c l $  4 exp[-A2(1 - ~,)~/21;]. (48) 

I = [ v e / Q e ( ~ ~ ) l W e ( & ~ ) .  (49) 

where eo is defined by 

1 - - (I,/A)[ln(l/~l&)]'/~. (50) 
In this sense the width of the plateau decreases linearly with increase of electric field. 
The linear dependence of the plateau width on electric field has general character and 
is caused exclusively by the sharp dependence of the tunnelling probability on the 
tunnelling length. 

4. Fluctuations 

Very small samples with a size of the order of 1 pm have been used in experiments (Bliek 
et a1 1986a, b, d'Iorio et a1 1987). This size is still much larger than the screening length 
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(about 400 A according to an estimate by Kane et a1 (1988)). Therefore the electron 
density under the experimental conditions fluctuates weakly. The total number of 
electrons in a sample was about lo4. The number of impurities, especially strong 
impurities, is much less than the number of electrons. Noticeable fluctuations of Zdiss(N) 
can be expected. They are described by a formula 

d In I /dN = 2(A2/1$)(1 - E ~ ) / C P ( E ~ )  (51) 
following from (46) and (49). 

should be averaged over the energy interval: 
Because of the finite width of the step of n ( ~ )  near the value , O ( E ~ ) ,  entering (51), 

8~ l$/[A2(l - E O ) ] .  

Equation (51) shows that fluctuations of P ( E )  result in fluctuations of Z(N). Let P ( E )  
have a peak at energy Then, in some interval of variation of N ,  additional electrons 
fill impurity levels having energy E ~ .  So the current, defined by equation (49), remains 
constant. There appears a step on the curve Z(N). To define the position of such a step 
as a function of E we should use the more exact relationship between N and eo instead 
of (46): 

So the location of the step is defined by 

dN CC E4.  (53) 
This agrees qualitatively with the motion of steps found by Bliek et a1 (1986b). 

The experimental situation is ambiguous. In the first experiments Bliek et a1 (1986b) 
have claimed the observation of many steps on the Z(H) curve. However, this was not 
confirmed in following publications (Bliek et a1 1986a). d'Iorio et a1 (1987) stated that 
they really have observed steps on the same curve, but these steps are not so well 
pronounced. Two important features of fluctuations observed by Bliek et a1 (1986b) 
were their reproducibility for a given sample and different curves for different samples. 
This feature is typical for mesoscopic fluctuations, when only few impurities contribute 
to the current. 
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